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Abstract
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion systems due to the abun-
dance of Na in Earth’s crust and cost-effectiveness. A critical challenge in advancing SIB technology lies in
predicting suitable cathode materials and their crystal structures from chemical compositional space. Predict-
ing the crystallographic symmetry of materials from chemical composition remains a central challenge in con-
densed matter physics and materials science. Traditional methods require detailed structural data, making the
discovery process cumbersome. To address this, machine learning (ML) offers a data-driven pathway for rapid
and accurate predictions using only elemental information. This study presents a robust, physics-guided ML
framework for classifying crystallographic symmetry groups specifically space groups, crystal systems, point
groups, and Bravais lattices from chemical formulas of binary and ternary compounds relevant to sodium-ion
battery applications. A minimal, physically meaningful feature set was used, including stoichiometry, ionic
radii, ionization energies, and oxidation states. The classification task was treated as a multi-label, multi-
class problem, and model training addressed data imbalance using weighted metrics. The trained classifiers
achieved weighted balanced accuracies exceeding 90% across all symmetry group types. Despite the reduced
feature dimensionality, the models consistently captured underlying physical trends, demonstrating high re-
liability. Comparative analyses revealed that performance scales with dataset size, with ternary compounds
yielding higher prediction accuracy than binary ones due to richer data availability. This work underscores
the potential of employing physics-informed ML models to accelerate crystal structure prediction directly
from chemical formulas, serving as a foundational step toward full geometry prediction and faster discovery
of novel materials.
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